Near-Ultraviolet Mutagenesis in Superoxide Dismutase-deficient Strains of Escherichia coli.
نویسندگان
چکیده
We compared mutagenic spectra induced by polychromatic near-ultraviolet radiation (near-UV; 300-400 nm) with superoxide anion (O2-) -dependent mutagenesis using a set of Escherichia coli tester strains. Near-UV radiation produced increased frequencies of G:C to A:T transitions, G:C to T:A and A:T to T:A transversions, and small increases in frameshift mutations in wild-type cells. Tester strains lacking superoxide dismutase (SOD) activity (sodAsodB double mutants) demonstrated high spontaneous mutation frequencies and increased near-UV sensitivity. The double mutants also showed increased mutations induced by near-UV compared to either isogenic wild type, sodA or sodB single mutants. Furthermore, these mutants had an unusual spontaneous mutation spectrum, with a predominance of A:T to T:A transversions, followed by G:C to T:A transversions and frameshifts generated in runs of adenines in both the +1 and -1 direction. Other frameshifts were detected to a lesser degree. The oxygen dependency and the type of mutations spontaneously induced in SOD-deficient cells indicated that this mutagenic spectrum was caused by oxidative DNA damage. However, no apparent synergistic action between near-UV radiation and an increased flux of O2- could be detected. From the frequency and types of mutations induced by the two agents, we speculate that near-UV-induced mutagenesis and O2--dependent mutagenesis involve, in part, different lesion(s) and/or mechanism(s). The nature and possible mutagenic pathways of each are discussed.
منابع مشابه
Human copper-zinc superoxide dismutase complements superoxide dismutase-deficient Escherichia coli mutants.
An Escherichia coli double mutant, sodAsodB, that is deficient in both bacterial superoxide dismutases (Mn superoxide dismutase and iron superoxide dismutase) is unable to grow on minimal medium in the presence of oxygen and exhibits increased sensitivity to paraquat and hydrogen peroxide. Expression of the evolutionarily unrelated eukaryotic CuZn superoxide dismutase in the sodAsodB E. coli mu...
متن کاملSuperoxide dismutase (sod-1) null mutants of Neurospora crassa: oxidative stress sensitivity, spontaneous mutation rate and response to mutagens.
Enzymatic superoxide-dismutase activity is believed to be important in defense against the toxic effects of superoxide. Although superoxide dismutases are among the best studied proteins, numerous questions remain concerning the specific biological roles of the various superoxide-dismutase types. In part, this is because the proposed damaging effects of superoxide are manifold, ranging from ina...
متن کاملParaquat-mediated selection for mutations in the manganese-superoxide dismutase gene sodA.
We report the unexpected result that Escherichia coli isolates containing a multicopy plasmid (pDT1.5) carrying the manganese-superoxide dismutase gene sodA were more sensitive than the wild type to paraquat-mediated growth inhibition. The pDT1.5 locus responsible for the paraquat-sensitive phenotype was delimited to a 0.6-kilobase segment by transposon Tn5 mutagenesis. Moreover, superoxide dis...
متن کاملGeneral method for site-directed mutagenesis in Escherichia coli O18ac:K1:H7: deletion of the inducible superoxide dismutase gene, sodA, does not diminish bacteremia in neonatal rats.
A defined deletion in the Escherichia coli K-12 sodA gene (encoding manganese-superoxide dismutase) linked to a nontransposable selectable marker was generated by transposon Tn5 insertion in combination with in vitro mutagenesis. This mutant allele was used to replace the wild-type sodA gene in an E. coli clinical isolate of serotype O18ac:K1:H7 by bacteriophage P1 transduction. The O18ac:K1:H7...
متن کاملIncreased expression of periplasmic Cu,Zn superoxide dismutase enhances survival of Escherichia coli invasive strains within nonphagocytic cells.
We have studied the influence of periplasmic Cu,Zn superoxide dismutase on the intracellular survival of Escherichia coli strains able to invade epithelial cells by the expression of the inv gene from Yersinia pseudotuberculosis but unable to multiply intracellularly. Intracellular viability assays, confirmed by electron microscopy observations, showed that invasive strains of E. coli engineere...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental Health Perspectives
دوره 102 شماره
صفحات -
تاریخ انتشار 1994